首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   3篇
  国内免费   3篇
测绘学   8篇
大气科学   16篇
地球物理   47篇
地质学   39篇
海洋学   12篇
天文学   4篇
自然地理   3篇
  2024年   1篇
  2022年   2篇
  2021年   7篇
  2020年   5篇
  2019年   1篇
  2018年   6篇
  2017年   12篇
  2016年   9篇
  2015年   2篇
  2014年   6篇
  2013年   9篇
  2012年   2篇
  2011年   3篇
  2010年   7篇
  2009年   4篇
  2008年   7篇
  2007年   7篇
  2006年   2篇
  2005年   2篇
  2004年   7篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1986年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1974年   1篇
  1967年   1篇
  1966年   1篇
  1958年   1篇
排序方式: 共有129条查询结果,搜索用时 383 毫秒
41.
42.
This paper emphasizes the fact that tsunamis can occur in continental lakes and focuses on tsunami triggering by processes related to volcanic eruptions and instability of volcanic edifices. The two large lakes of Nicaragua, Lake Managua and Lake Nicaragua, host a section of the Central American Volcanic Arc including several active volcanoes. One case of a tsunami in Lake Managua triggered by an explosive volcanic eruption is documented in the geologic record. However, a number of events occurred in the past at both lakes which were probably tsunamigenic. These include massive intrusion of pyroclastic flows from Apoyo volcano as well as of flank-collapse avalanches from Mombacho volcano into Lake Nicaragua. Maar-forming phreatomagmatic eruptions, which repeatedly occurred in Lake Managua, are highly explosive phenomena able to create hugh water waves as was observed elsewhere. The shallow water depth of the Nicaraguan lakes is discussed as the major limiting factor of tsunami amplitude and propagation speed. The very low-profile shores facilitate substantial in-land flooding even of relatively small waves. Implications for conceiving a possible warning system are also discussed.  相似文献   
43.
The sensitivity of the predictive skill of a decadal climate prediction system is investigated with respect to details of the initialization procedure. For this purpose, the coupled ocean–atmosphere UCLA/MITgcm climate model is initialized using the following three different initialization approaches: full state initialization (FSI), anomaly initialization (AI) and FSI employing heat flux and freshwater flux corrections (FC). The ocean initial conditions are provided by the German contribution to Estimating the Circulation and Climate of the Ocean state estimate (GECCO project), from which ensembles of decadal hindcasts are initialized every 5 years from 1961 to 2001. The predictive skill for sea surface temperature (SST), sea surface height (SSH) and the Atlantic meridional overturning circulation (AMOC) is assessed against the GECCO synthesis. In regions with a deep mixed layer the predictive skill for SST anomalies remains significant for up to a decade in the FC experiment. By contrast, FSI shows less persistent skill in the North Atlantic and AI does not show high skill in the extratropical Southern Hemisphere, but appears to be more skillful in the tropics. In the extratropics, the improved skill is related to the ability of the FC initialization method to better represent the mixed layer depth, and the highest skill occurs during wintertime. The correlation skill for the spatially averaged North Atlantic SSH hindcasts remains significant up to a decade only for FC. The North Atlantic MOC initialized hindcasts show high correlation values in the first pentad while correlation remains significant in the following pentad too for FSI and FC. Overall, for the current setup, the FC approach appears to lead to the best results, followed by the FSI and AI procedures.  相似文献   
44.
45.
46.
Water temperature is a key driver for riverine biota and strongly depends on shading by woody riparian vegetation in summer. While the general effects of shading on daily maximum water temperature Tmax are well understood, knowledge gaps on the role of the spatial configuration still exist. In this study, the effect of riparian buffer length, width, and canopy cover (percentage of buffer area covered by woody vegetation) on Tmax was investigated during summer baseflow using data measured in seven small lowland streams in western Germany (wetted width 0.8–3.7 m). The effect of buffer length on Tmax differed between downstream cooling and heating: Tmax approached cooler equilibrium conditions after a distance of 0.4 km (~45 min travel-time) downstream of a sharp increase in canopy cover. In contrast, Tmax continued to rise downstream of a sharp decrease in canopy cover along the whole 1.6 km stream length investigated. The effect of woody vegetation on Tmax depended on buffer width, with changes in canopy cover in a 10 m wide buffer being a better predictor for changes in Tmax compared to a 30 m buffer. The effect of woody vegetation on Tmax was linearly related to canopy cover but also depended on daily temperature range Trange, which itself was governed by cloudiness, upstream canopy cover, and season. The derived empirical relationship indicated that Tmax was reduced by −4.6°C and increased by +2.7°C downstream of a change from unshaded to fully shaded conditions and vice versa. This maximum effect was predicted for a 10 m wide buffer at sunny days in early summer, in streams with large diel fluctuations (large Trange). Therefore, even narrow woody riparian buffers may substantially reduce the increase in Tmax due to climate change, especially in small shallow headwater streams with low baseflow discharge and large daily temperature fluctuations.  相似文献   
47.
The Lonquimay volcanic complex (LVC) in the high Southern Andes comprises a stratocone and NE-trending flank-cone alignments. Numerous effusive and explosive volcanic eruptions characterize its post-glacial magmatic activity. Our tephrostratigraphic record, pre-dating the four historically documented eruptions, comprises 22 dated pyroclastic deposits that are used to constrain repose time distribution and eruption probability of the LVC magmatic system. Statistical examination of the stratigraphy-based eruption time series yields probabilities of 20–50 % for at least one explosive (VEI ≥ 3) eruption within the next 100 years as of 2011. The tephra deposits are subdivided into three petrographic groups: a felsic group (Lonquimay colored-pumice tephra, LCPT), an intermediate population (Lonquimay gray pumice tephra, LGPT), and a mafic member (Lonquimay dark scoria tephra, LDST). The distribution of these petrographic groups through the LVC tephrostratigraphy is linked to the observed changes in repose times. LDST-deposits as well as deposits compositionally zoned from LCPT to LGPT dominate the lower part of the stratigraphy for which recurrence times are short (RTmean = 417 ± 169a). Deposits younger than 6,000 b2k (years before 2000 AD) have dominantly LCPT and minor LDST compositions, no longer contain LGPT, and repose times are significantly longer (RTmean = 1,350 ± 310a). We interpret the change in eruption regime to result from a rearrangement in the magma storage and plumbing system. Thermobarometric calculations based on cpx–liquid equilibria and amphibole compositions reveal three distinct magma storage levels: the mafic LDST derive from mid crustal storage (P mean = 476 ± 95 MPa, T mean = 1,073 ± 24 °C), felsic LCPT mainly erupted from upper-crustal level (P mean = 86 ± 49 MPa, T mean = 936 ± 24 °C), whereas LGPT samples yield intermediate storage depths (P mean = 239 ± 100 MPa, T mean = 1,013 ± 17 °C). Magma contributions from this intermediate reservoir are restricted to >6,000 b2k when the Lonquimay plumbing system was in a regime of short repose times; disappearance of the intermediate reservoir coincides with the change to longer repose times between eruptions.  相似文献   
48.
In the Kachchh Mainland, the Jumara Dome mixed carbonate-siliciclastic succession is represented by the Jhurio and Patcham formations and siliciclastic-dominating Chari Formation (Bathonian to Oxfordian). The Ju- mara Dome sediments were deposited during sea-level fluctuating, and were interrupted by storms in the shallow marine environment. The sandstones are generally medium-grained, moderately sorted, subangular to subrounded and of low sphericity. The sandstones are mineralogically mature and mainly composed of quartzarenite and subar- kose. The plots of petrofacies in the Qt-F-L, Qm-F-Lt, Qp-Lv-Ls and Qm-P-K ternary diagrams suggest mainly the basement uplift source (craton interior) in rifted continental margin basin setting. The sandstones were cemented by carbonate, iron oxide and silica overgrowth. The Chemical Index of Alteration values (73% sandstone and 81% shale) indicate high weathering conditions in the source area. Overall study suggests that such strong chemical weathering conditions are of unconformity with worldwide humid and warm climates during the Jurassic period. Positive correlations between A1203 and Fe203, TiO2, Na20, MgO, K20 are evident. A high correlation coefficient between A1203 and K20 in shale samples suggests that clay minerals control the major oxides, The analogous con- tents of Si, A1, Ti, LREE and TTE in the shale to PAAS with slightly depleted values of other elements ascribe a PAAS like source (granitic gneiss and minor mafics) to the present study. The petrographic and geochemical data strongly suggest that the studied sandstones/shales were deposited on a passive margin of the stable intracratonic basin.  相似文献   
49.

Sea levels of different atmosphere–ocean general circulation models (AOGCMs) respond to climate change forcing in different ways, representing a crucial uncertainty in climate change research. We isolate the role of the ocean dynamics in setting the spatial pattern of dynamic sea-level (ζ) change by forcing several AOGCMs with prescribed identical heat, momentum (wind) and freshwater flux perturbations. This method produces a ζ projection spread comparable in magnitude to the spread that results from greenhouse gas forcing, indicating that the differences in ocean model formulation are the cause, rather than diversity in surface flux change. The heat flux change drives most of the global pattern of ζ change, while the momentum and water flux changes cause locally confined features. North Atlantic heat uptake causes large temperature and salinity driven density changes, altering local ocean transport and ζ. The spread between AOGCMs here is caused largely by differences in their regional transport adjustment, which redistributes heat that was already in the ocean prior to perturbation. The geographic details of the ζ change in the North Atlantic are diverse across models, but the underlying dynamic change is similar. In contrast, the heat absorbed by the Southern Ocean does not strongly alter the vertically coherent circulation. The Arctic ζ change is dissimilar across models, owing to differences in passive heat uptake and circulation change. Only the Arctic is strongly affected by nonlinear interactions between the three air-sea flux changes, and these are model specific.

  相似文献   
50.
Rivers are worldwide highly fragmented due to human impacts. This fragmentation has a negative effect on fish movement and dispersal. Many artificial barriers such as river bed sills and small weirs are nowadays replaced by block ramps in order to reestablish longitudinal connectivity for fish in rivers and streams. We studied the upstream passage of several fish species on different types of block ramps with slopes between 3.6 and 13.4 %. We conducted translocation experiments in the field based on mark-recapture and on the use of PIT-tags. Temporal movement patterns were observed by an instream antenna. Hydraulic and morphological characteristics of block ramps were measured and compared with fish passage efficiency. Our results clearly showed that upstream passage efficiency differs between fish species, size classes and block ramps. We observed that brown trout (Salmo trutta fario) performed better than bullhead (Cottus gobio) and several cyprinid species on the same block ramps. Passage efficiency of brown trout and chub (Leuciscus cephalus) was size-selective, with small-sized individuals being less successful. For brown trout, size-selectivity became more relevant with increasing slope of ramp. We conclude that block ramps with slopes of >5 % are ineffective for the small-sized cyprinid species and that vertical drops within step-pool ramps can hinder successful upstream passage of bullhead.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号